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Learning Rates and States from Biophysical Time Series: A Bayesian
Approach to Model Selection and Single-Molecule FRET Data

Jonathan E. Bronson,† Jingyi Fei,† Jake M. Hofman,‡ Ruben L. Gonzalez Jr.,†* and Chris H. Wiggins§

†Department of Chemistry, ‡Department of Physics, and §Department of Applied Physics and Applied Mathematics, Columbia University,
New York, New York

ABSTRACT Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the
opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about
the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist
requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers
of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood—selecting
the most likely parameter values—to maximum evidence: selecting the most likely model. In either case, such an inference pres-
ents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational
Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time
series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET
data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative
modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this
analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net.
INTRODUCTION

Single-molecule biology has triumphed at creating well-

defined experiments to analyze the workings of biological

materials, molecules, and enzymatic complexes. As the

molecular machinery studied becomes more complex, so

too do the biological questions asked and, necessarily, the

statistical tools needed to answer these questions from the

resulting experimental data. In a number of recent experi-

ments, researchers have attempted to infer mechanical

parameters (e.g., the typical step size of a motor protein),

probabilistic parameters (e.g., the probability per turn that

a topoisomerase releases from its DNA substrate), or kinetic

parameters (e.g., the folding/unfolding rates of a ribozyme)

via statistical inference (1–9). Often the question of interest

is not only one of selecting model parameters but also select-

ing the model, including from among models that differ in

the number of parameters to be inferred from experimental

data. The most straightforward approach to model selection

generalizes the common idea of maximum likelihood

(ML)—selecting the most likely parameter values—to

maximum evidence (ME): selecting the most likely model.

In this article, we focus on model selection in a specific

example of such a biological challenge: revealing the

number of enzymatic conformational states in single-mole-

cule Förster resonance energy transfer (smFRET) data.

FRET (10–13) refers to the transfer of energy from a donor

fluorophore (which has been excited by short-wavelength

Submitted July 21, 2009, and accepted for publication September 14, 2009.

*Correspondence: rlg2118@columbia.edu

Jake M. Hofman’s present address is Yahoo! Research, 111 West 40th St.,

New York, NY 10018.

Editor: David P. Millar.

� 2009 by the Biophysical Society

0006-3495/09/12/3196/10 $2.00
light) to an acceptor fluorophore (which then emits light of

a longer wavelength) with efficiency that decreases as the

distance between the fluorophores increases. The distance

dependence of the energy transfer efficiency implies that

the quantification of the light emitted at both wavelengths

from a fluorophore pair may be used as a proxy for the actual

distance (typically ~1–10 nm) between these fluorophores.

Often a scalar summary statistic (e.g., the ‘‘FRET ratio’’

IA/(IA þ ID) of the acceptor intensity to the sum of the

acceptor and donor intensities) is analyzed as a function of

time, yielding time series data that are determined by the

geometric relationship between the two fluorophores in

a nontrivial way. When the donor and acceptor are biochemi-

cally attached to a single molecular complex, one may

reasonably interpret such a time series as deriving from the

underlying conformational dynamics of the complex.

If the complex of interest transitions from one locally

stable conformation to another, the experiment is well

modeled by a hidden Markov model (HMM) (14), a probabi-

listic model in which an observed time series (here, the

FRET ratio) is conditionally dependent on a hidden, or

unobserved, discrete state variable (here, the molecular

conformation). HMMs have long been used in ion channel

experiments in which the observed dynamic variable is

voltage, and the hidden variable represents whether the

channel is open or closed (15,16). More recently, Talaga

proposed adapting such modeling for FRET data (17), and

Ha and co-workers developed HMM software designed for

FRET analysis (18). Such existing software for biophysical

time series analysis implement ML on individual traces

and require users either to guess the number of states present

in the data, or to overfit the data intentionally by asserting an
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excess number of states. Resulting errors commonly are then

corrected via heuristics particular to each software package.

It would be advantageous to avoid the subjectivity (as well as

extra effort) on the part of the experimentalist that is neces-

sary in introducing thresholds or other parameterized penal-

ties for complex models, as well as to derive principled

approaches likely to generalize to new experimental contexts

and data types. To that end, our aim here is to implement

ME directly, avoiding overfitting even within the analysis

of each individual trace, rather than as a postprocessing

correction.

This article begins by describing the general problem of

using probabilistic or generative models for experimental

data (generically denoted y), in which one specifies the prob-

ability of the data given a set of parameters of biophysical

interest (denoted ~w) and possibly some hidden value of the

state variable of interest (denoted z). We then present one

particular framework, variational Bayesian expectation

maximization (VBEM), for estimating these parameters

and at the same time finding the optimal number of values

for the hidden-state variable z. (In this article, bold print is

used for variables which are extensive in the number of

observations.) We next validate the approach on synthetic

data generated by an HMM, with parameters chosen to simu-

late data comparable to experimental smFRET data of

interest. Having validated the technique, we apply it to

experimental smFRET data and interpret our results. We

close by highlighting advantages of the approach, suggesting

related biophysical time-series data that might be amenable

to such analysis, and outlining promising avenues for future

extension and developments of our analysis.

PARAMETER AND MODEL SELECTION

Since the techniques we present here are natural generaliza-

tions of those that form the common introduction to statis-

tical techniques in a broad variety of natural sciences, we

first remind the reader of a few key ideas in inference neces-

sary before narrowing to the description of smFRET data,

briefly discussing ML methods for parameter inference

and ME methods for model selection. Note that since the

ML-ME discussion does not rely on whether or not the

model features hidden variables, for the sake of simplicity

we first describe the inference in the context of models

without hidden variables.

Maximum likelihood inference

The context in which most natural scientists encounter statis-

tical inference is that of ML; in this problem setting, the

model is specified by an expression for the likelihood,

pðyj~wÞ —i.e., the probability of the vector of data y given

some unknown vector of parameters of interest,~w. (Although

this is not often stated explicitly, this is the framework under-

lying minimization of c
2 or sums of squared errors; cf.
Section S1 in the Supporting Material for more details.) In

this context, the ML estimate of the parameter ~w is

~w� ¼ argmax
~w

pðyj~wÞ: (1)

ML methods are useful for inferring parameter settings under

a fixed model (or model complexity), e.g., a particular

parameterized form with a fixed number of parameters.

However, when one would like to compare competing

models (in addition to estimating parameter settings), ML

methods are generally inappropriate, as they tend to ‘‘over-

fit’’, because likelihood always increases with greater model

complexity.

This problem is conceptually illustrated in the case of

inference from FRET data as follows: if a particular system

has a known number of conformational states, say K ¼ 2,

one can estimate the parameters (the transition rates between

states and relative occupation of states per unit time) by

maximizing the likelihood, which gives a formal measure

of the ‘‘goodness of fit’’ of the model to the data. Consider,

however, an overly complex model for the same observed

data with K ¼ 3 conformational states, which one might

do if the number of states is itself unknown. The resulting

parameter estimates will have a higher likelihood or ‘‘better’’

fit to the data under the maximum likelihood criterion, as

the additional parameters have provided more degrees of

freedom with which to fit the data. The difficulty here is

that maximizing the likelihood fails to accurately quantify

the desired notion of a ‘‘good fit’’ which should agree with

past observations, generalize to future ones, and model the

underlying dynamics of the system. Indeed, consider the

pathological limit in which the number of states, K, is set

equal to the number of FRET time points observed. The

model will exactly match the observed FRET trace, but

will generalize poorly to future observations. It will have

failed to model the data at all, and nothing will have been

learned about the true nature of the system; the parameter

settings will simply be a restatement of observations.

The difficulty in the above example is that one is permitted

both to select the model complexity (the number of parameters

in the above example) and to estimate single ‘‘best’’ parameter

settings, which results in overfitting. Although there are

several suggested solutions to this problem (reviewed in

Bishop (19) and MacKay (20)), we present here a Bayesian

solution for modeling FRET data that is both theoretically

principled and practically effective (see Maximum evidence

inference, below). In this approach, one extends the concepts

pertaining to maximum likelihood to that of maximum

marginal likelihood, or evidence, which results in an alterna-

tive quantitative measure of ‘‘goodness of fit’’ that explicitly

penalizes overfitting and enables one to perform model selec-

tion. The key conceptual insight behind this approach is that

one is prohibited from selecting single ‘‘best’’ parameter

settings for models considered, and rather maintains proba-

bility distributions over all parameter settings.
Biophysical Journal 97(12) 3196–3205
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Maximum evidence inference

The ML framework generalizes readily to the problem of

choosing among different models, not only models of

different algebraic forms, but also nested models in which

one model is a parametric limit of another, e.g., models

with hidden variables or variables in polynomial regression.

(A two-state model is a special case of a three-state model

with an empty state; a second-order polynomial is a special

case of a third-order polynomial with one coefficient set to

0.) In this case, we introduce an index K over possible

models, e.g., the order of the polynomial to be fit or, here,

the number of conformational states, and hope to find the

value of K* that maximizes the probability of the data, given

the model, p(yjK):

K� ¼ argmax
K

pðyjKÞ ¼ argmax
K

Z
d~wpðyj~w;KÞpð~wjKÞ:

(2)

The quantity p(yjK) is referred to as the marginal likelihood,

or evidence, as unknown parameters are marginalized (or

summed out) over all possible settings. The second expres-

sion in Eq. 2 follows readily from the rules of probability

provided we are willing to model the parameters themselves

(in addition to the data) as random variables. That is, we

must be willing to prescribe a distribution pð~wjKÞ from

which the parameters are drawn, given one choice of the

model. Since this term is independent of the data y, it is

sometimes referred to as the ‘‘prior’’; the treatment of param-

eters as random variables is one of the distinguishing features

of Bayesian statistics. (In fact, maximizing the evidence is

the principle behind the oft-used Bayesian information crite-

rion (BIC) (34), an asymptotic approximation valid under

a restricted set of circumstances, explored more thoroughly

in Section S2 of the Supporting Material.) In this form, we

may interpret the marginal likelihood, p(yjK), as an averaged

version of the likelihood pðyj~wÞ over all possible parameter

values, where the prior pð~wjKÞ weights each such value.

Unlike the likelihood, the evidence is largest for the model

of correct complexity and decreases for models that are either

too simple or too complex, without the need for any addi-

tional penalty terms. There are several explanations for

why evidence can be used for model selection (19). Perhaps

the most intuitive is to think of the evidence as the proba-

bility that the observed data was generated using the given

model (which we are allowed to do, since ME is a form of

generative modeling). Overly simplistic models cannot

generate the observed data and, therefore, have low evidence

scores (e.g., it is improbable that a two-FRET-state model

would generate data with three distinct FRET states). Overly

complex models can describe the observed data, but they can

generate so many different data sets that the specific

observed data set becomes improbable (e.g., it is improbable

that a 100-FRET-state model would generate data that only

has three distinct FRET states (especially when one
Biophysical Journal 97(12) 3196–3205
considers that the evidence is an average taken over all

possible parameter values)).

In addition to performing model selection, we would like

to make inferences about model parameters, described by the

probability distribution over parameter settings given the

observed data, pð~wjy;KÞ, termed the posterior distribution.

Bayes’ rule equates the posterior with the product of the

likelihood and the prior, normalized by the evidence:

pð~wjy;KÞ ¼ pðyj~w;KÞpð~wjKÞ
pðyjKÞ : (3)

Although ME, above, does not give us access to the posterior

directly, as we show below, VBEM gives not only an

approximation to the evidence but also an approximation

to the posterior.

Variational approximate inference

Although in principle calculation of the evidence and poste-

rior completely specifies the ME approach to model selec-

tion, in practice, exact computation of the evidence is often

both analytically and numerically intractable. One broad

and intractable class is that arising from models in which

observed data are conditionally dependent on an unknown

or hidden state to be inferred; these hidden variables must

be marginalized over (summed over) in calculating the

evidence in Eq. 2. (For the smFRET data considered here,

these hidden variables represent the unobservable conforma-

tional states.) As a result, calculation of the evidence now

involves a discrete sum over all states, z, in addition to the

integrals over parameter values, ~w:

pðyjKÞ ¼
X

z

Z
dwpðy; zj~w;KÞpð~wjKÞ: (4)

This significantly complicates the tasks of model selection

and posterior inference. Computing the terms in Eqs. 2 and

3 requires calculation of the evidence, direct evaluation of

which requires a sum over all K settings for each of T exten-

sive variables z (where T is the length of the time series).

Such a sum is intractable even for K ¼ 2 and modest values

of T, e.g., on the order of 25. Although there exists various

methods, such as Monte Carlo techniques, for numerically

approximating such sums, we appeal here to variational

methods for a scalable, robust, and empirically accurate

method for approximate Bayesian inference. (For a discus-

sion regarding practical aspects of implementing Monte

Carlo techniques, including burn-in, convergence rates, and

scaling, cf. Neal (21).)

To motivate the variational method, we note that we

wish not only to select the model by determining K* but

also to find the posterior probability distribution for the

parameters, given the data, i.e., pðz;~wjy;KÞ. This is done

by finding the distribution qðz;~wÞ that best approximates

pðz;~wjy;KÞ, i.e.,
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q�ðz;~wÞ ¼ argmin
qðz;~wÞ

DKLðqðz;~wÞjjpðz;~wjy;KÞÞ; (5)

where DKL is the usual Kullback-Leibler divergence, which

quantifies the dissimilarity between two probability distribu-

tions. A simple identity (derived in Section S3 of the

Supporting Material) relates this quantity to the evidence,

p(yjK):

log pðyjKÞ ¼ �F½qðz;~wÞ� þ DKLðqðz;~wÞjjpðz;~wjy;KÞÞR
� F½qðz;~wÞ�; ð6Þ

where F½qðz;~wÞ� is an analytically tractable functional

(owing to a simple choice of the approximating distribution

qðz;~wÞ). The inequality in Eq. 6 results from the property

DKL R 0, with equality if and only if qðz;~wÞ ¼
pðz;~wjy;KÞ. Mathematically, Eq. 6 illustrates that mini-

mizing the functional F½qðz;~wÞ� simultaneously maximizes

a lower bound on the evidence and minimizes the dissimi-

larity between the test distribution, q, and the parameter

posterior distribution.

Qualitatively, the best test distribution gives not only the

best estimate of the evidence but also the best estimate of

the posterior distribution of the parameters themselves. In

going from Eq. 4 to Eq. 6, we have replaced the problem

of an intractable summation with that of bound optimization.

As is commonly the case in bound optimizations, the close-

ness of this bound to the true evidence cannot be calculated.

The validity of the approximation must be tested on synthetic

data (as described in Numerical Experiments).

Calculation of F is made tractable by choosing an approx-

imating distribution, q, with conditional independence

among variables that are coupled in the model given by p;

for this reason, the resulting technique generalizes mean-

field theory of statistical mechanics (20). Just as in mean-

field theory, the variational method is defined by iterative

update equations; here, the update equations result from

setting the derivative of F with respect to each of the factors

in the approximating distribution q to 0. This procedure

for calculating evidence is known as VBEM, and can be

thought of as a special case of the more general expectation

maximization algorithm (EM). (We refer the reader to

Bishop (19) for a more pedagogical discussion of EM and

VBEM.) Since F is convex in each of these factors, the

algorithm provably converges to a local (though not

necessarily global) optimum, and multiple restarts are

typically employed. Note that this is true for EM procedures

more generally, including as employed to maximize

likelihood in models with hidden variables (e.g., HMMs).

In ML inference, practitioners on occasion use the con-

verged result, based on one judiciously chosen initial condi-

tion, rather than the optimum over restarts; this heuristic

often prevents pathological solutions (cf. Bishop (19),

Chapter 9).
STATISTICAL INFERENCE AND FRET

Hidden Markov modeling

The HMM (14), illustrated in Fig. S9 of the Supporting

Material, models the dynamics of an observed time series,

y (here, the observed FRET ratio) as conditionally dependent

on a hidden process, z (here, the unknown conformational

state of the molecular complex). At each time t, the confor-

mational state, zt, can take on any one of K possible values,

conditionally dependent only on its value at the previous

time via the transition probability matrix p(ztjzt–1) (i.e., z is

a Markov process); the observed data depend only on the

current-time hidden state via the emission probability p(ytjzt).

According to the convention of the field, we model all tran-

sition probabilities as multinomial distributions and all emis-

sion probabilities as Gaussian distributions (18,22), ignoring

for the moment the complication of modeling a variable

distributed on the interval (0, 1) with a distribution of support

(–N, N).

For smFRET time series with observed data (y1,.,yT)¼ y
and corresponding hidden-state conformations (z1,.,zT)¼ z,

the joint probability of the observed and hidden data is

pðy; zj~w;KÞ ¼ pðz1j~w;KÞ
hYT

t¼ 2

pðztjzt�1;~w;KÞ
i

�
YT

t¼ 1

pðytjzt;~w;KÞ; (7)

where ~w comprises four types of parameters: a K-element

vector,~p, where the kth component, pk, holds the probability

of starting in the kth state; a K� K transition matrix, A, where

aij is the probability of transitioning from the ith hidden state

to the jth hidden state (i.e., aij ¼ p(zt ¼ jjzt–1 ¼ i)); and two

K-element vectors, ~m and ~l, where mk and lk are the mean

and precision of the Gaussian distribution of the kth state.

As in Eq. 4, the evidence follows directly from multi-

plying the likelihood by priors and marginalizing:

pðyjKÞ ¼
X

z

Z
d~wpð~pjKÞpðAjKÞpð~m;~ljKÞpðz1j~p;KÞ

�
hYT

t¼ 2

pðztjzt�1;A;KÞ
iYT

t¼ 1

pðytjzt;~m;~l;KÞ: ð8Þ

The pð~pjKÞ and each row of p(AjK) are modeled as Dirichlet

distributions; each pair of mk and lk are modeled jointly as

a Gaussian-gamma distribution. These distributions are the

standard choice of priors for multinomial and Gaussian

distributions (19). If we also assume that qðz;~wÞ factorizes

into qðzÞqð~wÞ, this HMM can be solved via VBEM (cf. Ji

et al. (23)). Algebraic expressions for these distributions

can be found in the Supporting Material (Section S6.1).

Their parameter settings and the effect of their parameter

settings on data inference can be found in Sections S6.2

and S6.3, respectively, of the Supporting Material. We found
Biophysical Journal 97(12) 3196–3205
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that for the experiments considered here, and the range of

prior parameters tested, there is little discernible effect of

the prior parameter settings on the data inference.

The variational approximation to the above evidence

utilizes the dynamic program termed the forward-backward

algorithm (14), which requires O(K2T) computations,

rendering the computation feasible. (In comparison, direct

summation over all terms requires O(KT) operations.) We

emphasize that although individual steps in the ME calcula-

tion are slightly more expensive than their ML counterparts,

the scaling with the number of states and observations is

identical. As discussed in Variational Approximate Infer-

ence, above, in addition to calculating the evidence, the

variational solution yields a distribution approximating the

probability of the parameters given the data. Idealized traces

can be calculated by taking the most probable parameters

from these distributions and calculating the most probable

hidden-state trajectory using the Viterbi algorithm (24).

Rates from states

HMMs are used to infer the number of conformational states

present in the molecular complex, as well as the transition

rates between states. Here, we follow the convention of the

field by fitting every trace individually (since the number

and mean values of smFRET states often vary from trace

to trace). Unavoidably, then, an ambiguity is introduced in

comparing FRET state labels across multiple traces, since

‘‘state 2’’ may refer to the high variant of a low state in one

trace and to the low variant of a high state in a separate trace.

To overcome this ambiguity, rates are not inferred directly

from qð~wÞ, but rather from the idealized traces, bz, where

bz ¼ argmax
z

q
�
z
��y;~wy;K�; (9)

and ~wy are, for ME, the parameters specifying the optimal

parameter distribution, q�ð~w; zÞ, or, for ML, the most likely

parameters, ~w�. The number of states in the data set can

then be determined by combining the idealized traces and

plotting a 1D FRET histogram or transition density plot

(TDP). Inference facilitates the calculation of transition rates

by, for example, dwell-time analysis, TDP analysis, or by

dividing the sum of the dwell times by the total number of

transitions (18,25). In this work, we determine the number

of states in an individual trace using ME. To overcome the

ambiguity of labels when combining traces, we follow the

convention of the field and use 1D FRET histograms and/

or TDPs to infer the number of states in experimental data

sets and calculate rates using dwell-time analysis (Section

S5.3 in the Supporting Material).

NUMERICAL EXPERIMENTS

We created a software package to implement VBEM for

FRET data called VBFRET. This software was written in

MATLAB (The MathWorks, Natick, MA) and is available
Biophysical Journal 97(12) 3196–3205
open source, including a point and click GUI. All ME data

inference was performed using VBFRET. All ML data infer-

ence was performed using HaMMy (18), although we note

that any analysis based on ML should perform similarly

(see Section S5.1 in the Supporting Material for practicalities

regarding implementing ML). Parameter settings used for

both programs, methods for creating computer-generated

synthetic data, and methods for calculating rate constants

for experimental data can be found in Section S5 in the Sup-

porting Material. According to the convention of the field, in

subsequent sections, the dimensionless FRET ratio is quoted

in dimensionless ‘‘units’’ of FRET.

Example: maximum likelihood versus maximum
evidence

To illustrate the differences between ML and ME, consider

the synthetic trace shown in Fig. 1, generated with three

noisy states (K0 ¼ 3) centered at mz ¼ (0.41, 0.61, 0.81)

FRET. This trace was analyzed by both ME and MLwith

K ¼ 1 (underfit), K ¼ 3 (correctly fit), and K ¼ 5 (overfit)

(Fig. 1 A). In the cases where only one or three states are

allowed, ME and ML perform similarly. However, when five

states are allowed, ML overfits the data, whereas ME leaves

two states unpopulated and correctly infers three states,

illustrated clearly via the idealized trace.

Moreover, whereas the likelihood of the overfitting model

is larger than that of the correct model, the evidence is largest

when only three states are allowed (pðyj~w�;K > K0Þ >
pðyj~w�;K0Þ; however, p(yjK) peaks at K ¼ K0 ¼ 3). The

ability to use the evidence for model selection is further

illustrated in Fig. 1 B, in which the data seen in Fig. 1 A
are analyzed using both ME and ML with 1 % K % 10.

The evidence is greatest when K ¼ 3; however, the likeli-

hood increases monotonically as more states are allowed,

ultimately leveling off after five or six states are allowed.

Statistical validation

ME can be statistically validated by generating synthetic

data, for which the true trajectory of the hidden state, z0, is

known, and quantifying performance relative to ML. We

performed such numerical experiments, generating several

thousand synthetic traces, and quantified accuracy as a func-

tion of signal/noise ratio via four probabilities: 1), accuracy

in the number of states, pðjbzj ¼ jz0jÞ: the probability in

any trace of inferring the correct number of states (where

jz0j is the number of states in the model generating the

data and jbzj is the number of populated states in the idealized

trace); 2), accuracy in states, pðbz ¼ z0Þ: the probability in

any trace at any time of inferring the correct state; 3), sensi-

tivity to true transitions: the probability in any trace at any

time that the inferred trace, bz, exhibits a transition, given

that z0 does; and 4), specificity of inferred transitions: the

probability in any trace at any time that the inferred trace,

z0, does not exhibit a transition, given that the true trace bz
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FIGURE 1 A single (synthetic) FRET trace analyzed by

ME and ML. The trace contains three hidden states. (A)

(Upper) Idealized traces inferred by ME when K ¼ 1,

K ¼ 3, and K ¼ 5, as well as the corresponding log(evi-

dence) for the inference. The data are underresolved

when K ¼ 1, but for both K ¼ 3 and K ¼ 5, the correct

number of states is populated. (Lower) Idealized traces in-

ferred by ML when K¼ 1, K¼ 3, and K¼ 5, as well as the

corresponding log(likelihood). Inferences when K ¼ 1 and

K¼ 3 are the same as for ME, but the data are overfit when

K ¼ 5. (B) The log (evidence) from ME (black) and log

likelihood from ML (gray) for 1 % K % 10. The evidence

is correctly maximized for K ¼ 3, but the likelihood

increases monotonically.
does not. We note, encouragingly, that for the ME inference,

jbzj always equaled K* as defined in Eq. 2.

We identify each inferred state with the true state that is

closest in terms of their means, provided the difference in

means is <0.1 FRET. Inferred states for which no true state

is within 0.1 FRET are considered inaccurate. Note that we

do not demand that one and only one inferred state be iden-

tified with the true state. This effective smoothing corrects

overfitting errors in which one true state has been inaccu-

rately described by two nearby states (consistent with the

convention of the field for analyzing experimental data).

For all synthetic traces, K0 ¼ 3 with means centered at

mz ¼ (0.25, 0.5, 0.75) FRET. Traces were made increasingly

noisy by increasing the standard deviation, s, of each state.

Ten different noise levels, ranging from s z 0.02 to s z
0.15, were used. Given the FRET states’ mean separation

and transition rates, and the lengths of the traces, this noise

range varies from unrealistically noiseless to unrealistically

noisy. Trace length, T, varied from 50 % T % 500 time

steps, drawn randomly from a uniform distribution. One

time step corresponds to one time-binned unit of an experi-

mental trace, which is typically 25–100 ms for most CCD-

camera-based experiments. Fast-transitioning (mean lifetime

of 4 time steps between transitions) and slow-transitioning

(mean lifetime of 15 time steps between transitions) traces

were created and analyzed separately. Transitions were

equally likely from all hidden states to all hidden states.

For each of the 10 noise levels and two transition speeds,

100 traces were generated (2000 traces in total). Traces for

which K0 ¼ 2 (Fig. S7) and K0 ¼ 4 (Fig. S8) were created
and analyzed as well. The results were qualitatively similar

and can be found in Section S7 of the Supporting Material.

As expected, both programs performed better on low noise

traces than on high noise traces. ME correctly determined the

number of FRET states more often than did ML in all cases

except for the noisiest fast-transitioning trace set (Fig. 2,

upper left). Of the 2000 traces analyzed here using ME

and ML, ME overfit one and underfit 232, and ML overfit

767 and underfit 391. In short, ME essentially eliminated

overfitting of the individual traces, whereas ML overfit

38% of individual traces. More than 95% (all but nine) of

ME underfitting errors occurred on traces with FRET state

noise >0.09, whereas ML underfitting was much more

evenly distributed (at least 30 traces at every noise level

were underfit by ML). The underfitting of noisy traces by

ME may be a result of the intrinsic resolvability of the

data, rather than a shortcoming of the inference algorithm;

as the noise of two adjacent states becomes much larger

than the spacing between them, the two states become indis-

tinguishable from a single noisy state (in the limit, there is no

difference between a one-state and a two-state system if the

states are infinitely noisy). The causes of the underfitting

errors by ML are less easily explained, but such errors

suggest that the ML algorithm has not converged to a global

optimum in likelihood (for reasons explained in Section S5.2

in the Supporting Material).

In analyzing the slow-transitioning traces, the methods

performed roughly equally on Probabilities 2–4 (always

within ~5% of each other). For the fast-transitioning traces,

however, ME was much better at inferring the true trajectory
Biophysical Journal 97(12) 3196–3205
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FIGURE 2 Comparison of ME and ML as a function of

increasing hidden-state noise. Fast-transitioning (hidden-

state mean lifetime of four time steps) and slow-transition-

ing (hidden-state mean lifetime of 15 time steps) traces

were created and analyzed separately. Each data point

represents the average value taken over 100 traces. (Upper

left) pðjbzj ¼ jz0jÞ: the probability in any trace of inferring

the correct number of states. (Upper right) pðbz ¼ z0Þ: the

probability in any trace at any time that a transition is in-

ferred given that a transition actually occurred. (Lower

left) Sensitivity to true transitions: the fraction of time the

correct FRET state was inferred during FRET trajectories.

(Lower right) Specificity of inferred transitions: the proba-

bility in any trace at any time that no transition is inferred

given that no transition actually occurred. Error bars on all

plots were omitted for clarity and because the data plotted

represent mean success rates for Bernoulli processes (and,

therefore, determine the variances of the data as well).
of traces (by a factor of 1.5–1.6 for all noise levels) and

showed superior sensitivity (by a factor of 2.7–12.5) to tran-

sitions at all noise levels. The two methods showed the same

specificity to transitions until a noise level of s > 0.8,

beyond which ML showed better specificity (by a factor of

1.06–1.13). Inspection of the individual traces showed that

all three of these results were due to ML missing many of

the transitions in the data.

These results on synthetic data suggest that when the

number of states in the system is unknown, ME clearly

performs better at identifying FRET states. For inference

of idealized trajectories, ME is at least as accurate as ML

for slow-transitioning traces and more accurate for fast-tran-

sitioning traces. The performance of ME on fast-transition-

ing traces is particularly encouraging, since detection of a

transient biophysical state is often an important objective

of smFRET experiments, as discussed below.

RESULTS

Having validated inference with VBFRET, we compared ME

and ML inference on experimental smFRET data, focusing

our attention on the number of states and the transition rates.

The data we used for this analysis report on the conforma-

tional dynamics of the ribosome, the universally conserved

ribonucleoprotein enzyme responsible for protein synthesis,

or translation, in all organisms. One of the most dynamic

features of translation is the precisely directed mRNA

and tRNA movements that occur during the translocation

step of translation elongation. Structural, biochemical, and

smFRET data overwhelmingly support the view that during

this process, ribosomal domain rearrangements are involved

in directing tRNA movements (3,6,25–31). One such ribo-

somal domain is the L1 stalk, which undergoes conforma-

tional changes between open and closed conformations that

correlate with tRNA movements between so-called classical
Biophysical Journal 97(12) 3196–3205
and hybrid ribosome-bound configurations (Fig. S10 A)

(6,31–33).

Using fluorescently labeled tRNAs and ribosomes, we

recently developed smFRET probes between tRNAs

(smFRETtRNA–tRNA) (27), ribosomal proteins L1 and L9

(smFRETL1–L9) (6), and ribosomal protein L1 and tRNA

(smFRETL1–tRNA) (32). Collectively, these data demonstrate

that upon peptide bond formation, tRNAs within pretranslo-

cation (PRE) ribosomal complexes undergo thermally driven

fluctuations between classical and hybrid configurations

(smFRETtRNA–tRNA) that are coupled to transitions of

the L1 stalk between open and closed conformations

(smFRETL1–L9). The net result of these dynamics is the tran-

sient formation of a direct L1 stalk-tRNA contact that

persists until the tRNA and the L1 stalk stochastically

fluctuate back to their classical and open conformations,

respectively (smFRETL1–tRNA). This intermolecular L1-stalk-

tRNA-contact is stabilized by binding of elongation factor

G (EF-G) to PRE and maintained during EF-G-catalyzed

translocation (6,32).

Here we compare the rates of L1-stalk closing (kclose) and

opening (kopen) obtained from ME and ML analysis of

smFRETL1–L9 PRE complex analogs (PMN) under various

conditions (which have the same number of FRET states by

both inference methods) with the number of states inferred

for smFRETL1–tRNA PMN complexes by ME and ML.

(FRET complexes shown in Fig. S10 B.) These data were

chosen for their diversity of smFRET ratios. The smFRETL1–L9

ratio fluctuates between FRET states centered at 0.34 and

0.56 (i.e., a separation of 0.22 FRET), whereas the

smFRETL1–tRNA ratio fluctuates between FRET states centered

at 0.09 and 0.59 FRET (i.e., a separation of 0.50 FRET).

In addition, smFRETL1–L9 data were recorded under condi-

tions that favor either fast-transitioning (PMNfMetþEFG) or

slow-transitioning (PMNfMet and PMNPhe) complexes (com-

plex compositions listed in Table 1).
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First, we compared the smFRETL1–L9 data obtained from

PMNfMet, PMNPhe, and PMNfMetþEFG. As expected from

previous studies (32), 1D histograms of idealized FRET

values from both inference methods showed two FRET states

centered at 0.34 and 0.56 FRET (and one additional state due

to photobleaching, for a total of three states). When individual

traces were examined for overfitting, however, ML inferred

four or five states in 20.1 5 3.7% of traces in each data set,

whereas ME inferred four or five states in only 0.9 5 0.5%

of traces. Consequently, more postprocessing was necessary

to extract transition rates from idealized traces inferred by ML.

TABLE 1 Comparison of smFRETL1–L9 transition rates inferred

by ME and ML

Data set* Method kclosed (sec-1) kopen (sec-1)

PMNPhe
y ME 0.66 5 0.05 1.0 5 0.2

ML 0.65 5 0.06 1.0 5 0.3

PMNfMet
z ME 0.53 5 0.08 1.7 5 0.3

ML 0.52 5 0.06 1.8 5 0.3

PMNfMetþEFG ME 3.1 5 0.6 1.3 5 0.2

(1 mM)x ML 2.1 5 0.4 1.0 5 0.2

PMNfMetþEFG ME 2.6 5 0.6 1.5 5 0.1

(0.5 mM)x ML 2.0 5 0.3 1.0 5 0.1

*Rates reported here are the mean 5 SD from three or four independent data

sets. Rates were not corrected for photobleaching of the fluorophores.
yPMNPhe was prepared by adding the antibiotic puromycin to a posttranslo-

cation complex carrying deacylated-tRNAfMet at the E site and fMet-Phe-

tRNAPhe at the P site, and thus contains a deacylated-tRNAPhe at the P site.
zPMNfMet was prepared by adding the antibiotic puromycin to an initiation

complex carrying fMet-tRNAfMet at the P site, and thus contains a deacy-

lated-tRNAfMet at the P site.
x1.0 mM and 0.5 mM EF-G in the presence of 1 mM GDPNP (a nonhydro-

lyzable GTP analog) were added to PMNfMet, respectively.
Our results (Table 1) demonstrate that there is very good

overall agreement between the values of kclose and kopen

calculated by ME and ML. For the relatively slow-transition-

ing PMNfMet and PMNPhe data, the values of kclose and kopen

obtained from ME and ML are indistinguishable. For the

relatively fast-transitioning PMNfMetþEFG data, however,

the obtained values of kclose and kopen differ slightly between

ME and ML. Since the true transition rates of the experi-

mental smFRETL1–L9 data can never be known, it is impos-

sible to assess the accuracy of the rate constants obtained

from ME or ML in the same way as with the analysis of

synthetic data. Although we cannot say which set of kclose

and kopen values are most accurate for this fast-transitioning

data set, our synthetic results would predict a larger dif-

ference between rate constants calculated by ME and ML

for faster-transitioning data and suggest that the values of

kclose and kopen calculated with ME have higher accuracy

(Fig. 2).

Consistent with previous reports (6), ML infers two FRET

states centered at flow h 0.09 and fhigh h 0.59 FRET (plus

one photobleached state) for all smFRETL1–tRNA data sets.

Conflicting with these results, however, ME infers three

FRET states (plus a photobleached state) for these data

sets. Two of these FRET states are centered at flow and fhigh,

as in the ML case, whereas the third ‘‘putative’’ state is

centered at fmid h 0.35 FRET, coincidentally at the mean

between flow and fhigh. Indeed, TDPs constructed from the

idealized trajectories generated by ME or ML analysis of

the PMNfMetþEFG smFRETL1–tRNA data set show the appear-

ance of a new, highly populated state at fmid in the ME-

derived TDP that is virtually absent in the ML-derived

TDP (Fig. S11). Consistent with the TDPs, ~46% of transi-

tions in the ME-analyzed smFRETL1–tRNA trajectories are

either to or from the new fmid state (Fig. 3 B). This fmid state

is extremely short-lived; ~75% of the data assigned to fmid

consist of a single observation, i.e., with a duration at or
A
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FIGURE 3 Analysis of the smFRETL1–tRNA fmid state.

(A) A representative smFRETL1–tRNA trace idealized by

ME, taken from the 50-ms exposure time data set. Both

the observed data (blue) and idealized path (red) are shown.

Individual data points, real and idealized, are shown as Xs.

To emphasize the data at or near fmid, the Xs are enlarged

and the observed and idealized data are shown in black

and green, respectively. (B) Bar graph of the percentages

of transitions to or from the fmid state under 25 ms, 50 ms,

and 100 ms CCD integration time. (C) Normalized popula-

tion histograms of dwell time spent at the fmid state under

25 ms, 50 ms, and 100 ms CCD integration time.
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below the CCD integration time (here, 50 ms) (Fig. 3 C). A

representative ME-analyzed smFRETL1–tRNA trace is shown

in Fig. 3 A.

There are at least two possible explanations for this putative

new state. The first is that fmid originates from a very short-

lived (i.e., lifetime %50 ms), bona fide, previously unidenti-

fied intermediate conformation of the PMN complex. The

second is that fmid data are artifactual, resulting from the

binning of the continuous-time FRET signal during CCD

collection. Each time-binned data point represents the average

intensity of thousands or more photons. If a transition occurs

25 ms into a 50-ms time step, half the photons will come from

the flow state and half from the fhigh state, resulting in a datum at

approximately their mean. This type of CCD blurring artifact

would be lost in the noise of closely spaced FRET states, but

would become more noticeable as the FRET separation

between states increases.

To distinguish between these two possibilities, we recorded

PMNfMetþEFG smFRETL1–tRNA data at half and double the

integration times (i.e., 25 ms and 100 ms). If the fmid state is

a true conformational intermediate, then 1), the percentage

of transitions exhibiting at least one data point at or near fmid

should increase as the integration time decreases; and 2), the

number of consecutive data points defining the dwell time

spent at or near fmid should increase as the integration time

decreases. Conversely, if the fmid state arises from a time-aver-

aging artifact, then 1), the percentage of transitions containing

at least one data point at or near fmid should increase as the inte-

gration time increases, because longer integration times

increase the probability that a transition will occur during

the integration time; and 2), the number of consecutive data

points defining the dwell time spent at or near the fmid state

should be independent of the integration time, because transi-

tions occurring within the integration time will always be

averaged to generate a single data point.

Consistent with the view that the fmid state arises from time

averaging over the integration time, Fig. 3 B demonstrates

that the percentage of transitions containing at least one

data point at or near fmid increases as the integration time

increases. This manifests as an increase in the density of tran-

sitions starting or ending at fmid as the integration time

decreases for the ME-derived TDPs in Fig. S11. These data

are further supported by the results presented in Fig. 3 C,

demonstrating that the number of consecutive data points

defining the dwell time of the fmid state is remarkably insen-

sitive to the integration time. We conclude that the fmid state

identified by ME is composed primarily of a time-averaging

artifact that we refer to as ‘‘camera blurring’’, and we call the

ME-inferred fmid state the ‘‘blur state’’. Although ML infers

four or five states in 35% of the traces (compared to only

25% for ME), for some reason, ML significantly suppresses,

but does not completely eliminate, detection of this blur state

in the individual smFRET trajectories. At present, we cannot

determine whether this is a result of the ML method itself

(i.e., overfitting noise in one part of the trace may cause it
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to miss a state in another) or due to the specific implementa-

tion of ML in the software we used (Section S5.1 in the Sup-

porting Material). In retrospect, the presence of blur states

should not be surprising, since they follow trivially from

the time averaging that results from averaging over the

CCD integration time. In Section S8 of the Supporting Mate-

rial, we propose a method for correcting these blur artifacts.

The observation that ML analysis does not detect a blur

state that is readily identified by ME analysis is in line

with our results on synthetic data, in which ME consistently

outperforms ML with regard to detecting the true number of

states in the data, particularly in fast-transitioning data, and

strongly suggests that ME will generally capture short-lived

intermediate FRET states that ML will tend to overlook.

Although this feature of ML might be desirable in terms of

suppressing blur states such as the one we have identified

in the smFRETL1–tRNA data set, it is undesirable in terms

of detecting bona fide intermediate FRET states that may

exist in a particular data set.

CONCLUSIONS

These synthetic and experimental analyses confirm that ME

can be used for model selection (identification of the number

of smFRET states) at the level of individual traces,

improving accuracy and avoiding overfitting. In addition,

ME inference solved by VBEM provides q*, an estimate of

the true parameter and idealized trace posterior, making

possible the analysis of kinetic parameters, again at the level

of individual traces. As a tool for inferring idealized traces,

ME produces traces that are visually similar to those of

ML; in the case of synthetic data generated to emulate exper-

imental data, ME performs with comparable or superior

accuracy. The idealized trajectories inferred by ME required

substantially less postprocessing, however, since ME usually

inferred the correct number of states to the data and, conse-

quently, did not require states with similar idealized values

within the same trace to be combined in a postprocessing

step. The superior trajectory inference, accuracy, and sensi-

tivity to transitions of ME on fast-transitioning synthetic

traces suggests that the differences in transition rates calcu-

lated for fast-transitioning experimental data is a result of

superior fitting by ME as well.

In some experimental data, ME detected a very short-lived

blur state, which comparison of experiments at different

sampling rates suggests is the result of a camera time-aver-

aging artifact. Once detected by ME, the presence of this

intermediate state is easily confirmed by visual inspection,

yet it was not identified by ML inference. Although not bio-

logically relevant in this instance, this result suggests that

ME inference is able to uncover real biological intermediates

in smFRET data that would be missed by ML.

We conclude by emphasizing that this method of data infer-

ence is in no way specific to smFRET. The use of ME and

VBEM could improve inference for other forms of biological
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time series where the number of molecular conformations is

unknown. Some examples include motor protein trajectories

with an unknown number of chemomechanical cycles

(i.e., steps), DNA/enzyme binding studies with an unknown

number of binding sites, and molecular dynamics simulations

in which important residues exhibit an unknown number of

rotamers.

All code used in this analysis, as well as a point-and-click

GUI interface, is available open source via http://vbFRET.

sourceforge.net.

SUPPORTING MATERIAL

Eight sections, 11 figures, and two tables are available at http://www.
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